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Quantum effects in systems with accelerated mirrors 

V P Frolov and E M Serebriany 
P N Lebedev Physics Institute, Leninsky Prospect 53, 117924 Moscow, USSR 

Received 23 January 1979 

Abstract. The problem of the vacuum state definition in a part of the Minkowski space 
bounded by a single or two spherically symmetric mirrors which expand or contract with 
uniform acceleration is considered. The Euclidean approach is used to obtain the explicit 
expressions for the corresponding causal Green functions. The vacuum stress-energy 
tensor is obtained and its properties are investigated. 

1. Introduction 

The problem of quantum particle creation by an external classical field is now of 
particular interest for many reasons. The case when an external field is of the special 
form of an infinite reflecting potential barrier whose position depends on time (the 
moving-mirror problem) seems to be the simplest one for investigation. At the same 
time, the consideration of the moving-mirror problem not only allows one to under- 
stand better more complicated situations (such as quantum particle creation by black 
holes) but also has its own importance. 

It is well known that the vacuum state in the presence of even a static mirror will 
differ from the empty-space vacuum state because of the change in the boundary 
conditions. In the case when the mirror is moving, a new effect can occur-quantum 
particle creation (Moore 1970, DeWitt 1975, Fulling and Davies 1976, Davies and 
Fulling 1977, Candelas and Deutsch 1977). The conformal invariance of the massless- 
field equations allows one to reduce the problem in two-dimensional space-time with 
time-dependent boundaries to the problem with static boundaries which can be 
resolved explicitly. That is why almost all of the previous investigations have been 
devoted to the two-dimensional moving-mirror models, and the two-dimensional case 
is now understood well enough. 

Although the two-dimensional results apparently allow one to understand qualita- 
tively some of the properties of the quantum processes in real four-dimensional 
systems, they cannot be transferred to the four-dimensional case without some pre- 
cautions. In particular, there are many well-known peculiar properties which dis- 
tinguish the massless-field theory in two-dimensional space-time. The direct solution 
of the four-dimensional problem is usually much more complicated and, as far as we 
know, the only four-dimensional solution was found by Candelas and Deutsch (1977) 
for the case of a plane uniformly accelerated mirror. 

In this paper a new method is proposed which allows us to find new solutions in an 
explicit closed form in the case when a single or pair of concentric spherical mirrors 
which expand or contract with uniform acceleration is present in four-dimensional 

0305-4470/79/122415 + 14$01.00 @ 1979 The Institute of Physics 2415 



2416 V P Frolov and E M Serebriany 

space-time. After passing to imaginary time, the problem of the causal Green function 
construction in Minkowski space with boundaries reduces to the problem of the 
calculation of the point charge potential in four-dimensional Euclidean space in the 
presence of the spherical conducting boundary. The method of images can be applied 
to find a solution in this case. The causal Green function reconstructed by the analytical 
continuation to physical space-time of the Euclidean Green function obtained contains 
all necessary information about physical properties of the system, and in particular it 
allows us to find the vacuum stress-energy tensor. Using this method we obtain the 
corresponding Green function for interior and exterior regions of the spherical mirror 
which expands or contracts with uniform acceleration and for the region between two 
such concentric mirrors. The main feature of these problems is that the external field 
corresponding to the mirrors does not switch off in either the past or the future. This is 
why the quantum field cannot be considered as asymptotically free and the usual 
definition of in- and out-vacuum states cannot be applied. Nevertheless, the spaces of 
in- and out-particles states can be restored if only one has a special prescription which 
allows one to define the causal Green function (Menskii 1974, Rumpf 1976). Using the 
Green functions obtained by the above Euclidean approach, we prove that in the 
problems under consideration the corresponding vacuums are stable, and calculate the 
stress-energy tensor describing the vacuum polarisation. 

The following notations are used in our Paper. The Minkowski metric signature is 
( -  + + +), and the scalar product of two vectors x and y with respect to this metric is 
denoted xy. The inner product of vectors x and y in a Euclidean space with a signature 
(+ + + +) is denoted ( x y ) ,  and 

4 

\ X I 2  = 1 ( X J 2 .  
i = l  

The symbols x 4 y ,  x 3 X ( x  4 y ,  x 4 Z) mean that a point X lies in the future (in the past) 
of a point y and a surface Z respectively. A complex conjugate is denoted by a bar over 
a symbol. 

2. Euclidean theory, Green functions and stress-energy tensor 

We restrict ourselves to considering the theory of the massless scalar field & ( x )  with an 
action 

For conformal invariant theory 6 = 4. The variation of this action with respect to g,, 
gives the stress-energy operator. In flat space-time it is of the form 

(2.2a) 

where [A,  B ] ,  = A B  + B A  and 

In Cartesian coordinates one can put V,’ = a/&. 
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The field operator 4 in the Heisenberg representation satisfies the equation 

04 =o, ( 2 . 3 ~ )  

with the following boundary condition on the moving-mirror surface Z: 

4 l x  = 0. (2.3b) 

Denote by 10; in) (IO; out)) the in-vacuum (out-vacuum) state for the problem under 
consideration. The concrete choice of these states will be discussed later. The problem 
of the vacuum stress-energy tensor definition in the region outside the mirror's 
boundary can be reduced to the computation of the matrix elements 

TG(x)=(O;inlTG(x)IO; in )= l imDz(x ,  y)G'"(xly). (2.4) 

G'"(xly) = (0; i n l [4 (~ ) ,  4(y)l+lO; out). 

Y + X  

Here G"'(x1y) is a Hadamard function (a fundamental solution) 

(2.5) 

G"'(x1y) is a symmetric function of x and y and satisfies equation ( 2 . 3 ~ )  and boundary 
conditions 

G(')(xIy)IXCx = G(')(xIy)IYCz 0. 

When the product of the field operators at coinciding points in equations (2.4) and 
(2.5) is taken, the corresponding expectation value is evidently divergent. In the case 
under consideration, to remove these divergences it is sufficient to subtract the 
corresponding zero-point vacuum fluctuations in the Minkowski space without boun- 
daries. The regularised stress-energy tensor is 

(2.6) 

The subscript 'reg' for any Green function denotes that the difference between this 
Green function and the corresponding 'free' (i.e. in Minkowski space without boun- 
daries) Green function (labelled by subscript '0') is taken. For example, 

GjLh(xly) = G'"(x1y) -Gb"(xly). (2.7) 

It is also convenient to introduce the function 

~"" ' (x ly )  = i(0; inlT(4(x)&(y))lO; in), (2.8) 
connected with the Hadamard function G'"(x/y) by 

G""'(x1y) = d(xly)+$iG"'(xly), 
where 

&x IY 1 = i d x O  - Y O)M(x), 4( Y 11, 
E ( ( Y )  = +(e(a) - e( - (Y I), 

(2.9) 

(2.10) 

[A,  B ]  AB -BA. 

Using the canonical commutation relations it is not difficult to verify that when the 
points x and y lie on some space-like surface both the functions d(xly), do(xIy) and 
their derivatives coincide. Thus one has 

(2.1 1) 
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From now on we assume that the limit y + x is taken along a space-like direction. 
Introduce also a causal (Feynman) Green function defined by the relation 

(2.12) 

This Green function contains all necessary information about the considered quantum 
system i r  an external field. Using it, one can in principle reconstruct the spaces of in- 
and out-particles states and define the S matrix (see e.g. Menskii 1974, Rumpf 1976 
and appendix 1 of this paper). 

In particular, it can be verified (see appendix 1) that the vacuum stability condition 
10; out) = eiu 10; in) is equivalent to the fulfilment of the relation 

G(x1y) = i(0; out/T(d)(x)d)( y ) ) j O ;  in)/(O; outlo; in). 

(G * G . ) ~ ( x / z ) = O ,  x + C + Z ,  
where 

(2.13) 

and E, is some complete Cauchy surface. If the vacuum state is stable, then G(x(y )  = 
G""'(xly), and using the causal Green function one can easily calculate T$,, ,(x) 
defined by equation (2.11). 

In the more general case when particle creation is possible, the connection 
between G(x1y) and G""'(x/y) becomes more complicated. It can be shown (see 
appendix 1) that G""'(x1y) can be defined as a solution of the following system of 
equations : 

(G * G""')z(x/z) = G ( x ( z ) ,  X 4 C 3 2 ,  

(e * ) I ( X / Z )  = 0 ,  x + x + z ,  

G""'(xly) = G""'( y j x ) .  

(2.14) 

If the field sources switch off in the remote past and future, then for a fixed value y 
the function G(x(y )  defined by equation (2.12) contains only positive (negative) 
frequencies when xo+m ( x o +  -a). After the Wick rotation x o +  - i x 4 ,  the cor- 
responding Euclidean Green function g(x4, xIy4,  y )  = -iG(-ix4, X I  -iy4, y )  decreases 
at the Euclidean space infinity. (The discussion of the Euclidean formulation of the 
quantum field theory can be found, for example, in Schwinger (1970).) In the 
Minkowski space without boundary, the causal Green function G(xly) can be defined as 
a special analytic continuation of a Euclidean Green function 8 ( x l y ) ,  which is uniquely 
defined as a decreasing-at-infinity solution of the equation 

= % ) W X l Y )  = 2( Y ) $ ( X l Y  1 = - Y 1, 
where 

In a more general case (in a curved space-time or in the presence of a non-vanishing 
external field or boundaries in a Minkowski space), when definition (2.12) cannot be 
applied, it appears that sometimes the corresponding Euclidean Green function can be 
naturally defined (see e.g. Hartle and Hawking 1976, Chitre and Hartle 1977, Lapedes 
1978). In this case it is natural to try to use the Euclidean Green function analytic 
continuation to define unambiguously the corresponding causal Green function G(x / y ) 
in original physical space-time. In our paper we use this approach. 
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3. Geometry of models and method of images 

3.1. Problem A 

As a first example we consider the case when the mirror boundary surface I: is described 
by the equation 

(3 .1)  2 2  2 x,x@=x - t  = a .  

The points of this spherical mirror are moving with a constant (in their own reference 
system) acceleration a- ' .  A simple geometrical consideration shows that a null ray can 
meet the reflecting surface of the mirror not more than once. (In the case of the 
uniformly accelerated plane considered by Candelas and Deutsch (1977),  almost all 
null rays are reflected by this plane an infinite number of times.) 

The Euclidean section CE ( t  = -ir) of an analytic continuation of the boundary 
surface I: is a four-dimensional sphere S4 (figure l ) ,  

(3 .2)  2 2 2  x + r  = a ,  

Figure 1. The geometry of problem A. The bold curves show ( a )  the uniformly accelerated 
spherical mirror and ( b )  the corresponding Euclidean section. The points x, y, ... and their 
images 2, 9 , .  . . are shown both in Minkowski and in Euclidean space. All the null rays 
emitted from y will pass after reflection through the point 9. 

Let B4 denote the interior part of this sphere. The corresponding Euclidean Green 
function 8(x ly)  satisfies the equation 

~ ( x ) 8 ( x l y ) = - W - y )  ( 3 . 3 ~ )  

and the boundary condition 

(If x, y C B 4  (an external problem), then the function 8(xly) is considered to be 
decreasing when one of its arguments tends to infinity.) Thus the function 8 ( x  / y ) can be 
considered as a potential, at a point x, of a unit point charge located at a point y in 
four-dimensional space in the presence of a conducting sphere. This problem can be 
resolved by the method of images in the same manner as for the analogous problem in 
electrostatics. 
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(3.4) 

be an image of the point x under an inversion transformation with respect to a sphere of 
a radius a, the centre of which is located at the origin of the coordinate system 
(Ixlz= a 2 ) .  Then the solution of equations (3.3) can be given in the form 

%(XlY) = ( I + J a ( x ) ) 8 0 ( x I y )  

= ( I  + Ja ( Y ) )%ob  lY 1 

where J a ( x ) f ( x )  = -(a2/1x1’)f(X’), and I is an identity operator. Since the function 
8 ( x l y )  is symmetric (i.e. 8 ( x l y )  = 8 ( y / x ) )  and equations ( 3 . 3 )  are invariant under the 
inversion transformation, equation (3.5) for x ,  y E B4(x, y ;  B 4 )  gives the interior 
(exterior) solution of problem (3.3): The analytic continuation of this function allows 
one to define the causal Green function both inside and outside the accelerated 
spherical mirror. 

3.2. Problem B 

The same method can be exploited to solve the corresponding problem in the region 
between two concentric mirror surfaces Z1 and Zz given by 

1 2 2  2 X : x  - t  = a ,  

C 2 ;  x2 - tZ = b 2 ,  b > a .  (3 .6)  
The Euclidean section of the analytic continuation of this region is a spherical layer 
between two four-dimensional spheres (figure 2 ) :  

2 2 2  
X;:X + r  = a ,  

Xk: x2 + T~ = b 2 ,  b > a .  (3.7) 

( 6 )  

Figure 2. The geometry of problem B. The bold curves show ( a )  the uniformly accelerated 
concentric spherical mirrors and ( b )  the corresponding Euclidean sections. The images of 
point x are shown both in Minkowski and in Euclidean space. 
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In this case the method of images can be used to find the solution of equation (3.3) in 
this region B E ( a B E  = & = Zk U 2;) in the form 

WY) = ( I + K ( x ) ) $ ~ ( x ~ Y ) = ( I + K ( Y ) ) ~ ~ ( ~ ~ Y ) ,  (3.8) 

where 

K = Ja +J& + JaJd,  + . . . + J b  +JbJ, +JbJaJb + . . . 
= (L-JaJb)-’(Ja +J=Jb)+(L-JbJ,)-l(Jb +JbJ,). (3.9) 

The explicit expression for %‘(xly) can be written as 

(3.10) 

The analytic continuation of solutions (3.5) and (3.10) to physical space-time will be 
discussed in the next section. 

It should be emphasised that the method of images in Euclidean space can be 
exploited to define the causal Green function for a wide class of moving-mirror 
boundaries. Let the Euclidean boundary consist of the parts of spheres and planes (a 
boundary may be connected or not, as in example B). If there exists a (finite or infinite) 
number of symmetry transformations (reflections and inversions) which allows one to 
map a considered region onto the total Euclidean space, leaving the boundary of the 
region unchanged, then one can obtain the solution to equation (3.3) in the form (3.8), 
where K is an operator constructed from the operators of the reflections and inversions 
by certain rules. 

4. Causal Green function, vacuum stability and stress-energy tensor 

Consider now 80(xly) = 1 /4 r2 (x  - y12 as an analytic function of two complex vector 
variables x and y. This function is well-defined everywhere except at the points where 
the denominator becomes zero. If x and y are real, then for x4 = ixo and y4 = iyo the 
analytical continuation of 80(xly) is regular everywhere except at the points where 
(x - y)’ = 0. The usual way to define this function at these points as a distribution is to 
use the Wick rotation prescription 

0 i 1 
G o ( x l y ) = i 8 ~ ( x 4 = i ( l - - i ~ ) x o ,  xIy4=i(l--ie)y , y)=- 

4 r 2  (x -y)’+ie’ (4.1) 

We postulate that the same infinitesimal term it- should be added to the denominators of 
all analytically continued parts of the Euclidean function under consideration to define 
the causal Green function as a distribution in physical space-time correctly. The 
corresponding expressions for the causal Green functions for problems A and B 
considered in the previous section are given in table 1. 

It should be noted that if a point x lies in the R region (x2 > 0), then x’ = Jax also lies 
in the R region and the points x and x’ are separated by the mirror surface. In the case of 
the interior problem A, when x2  < 0 the image 2 = Jax lies inside the mirror and we have 



2422 V P Frolov and E M Serebriany 

- - 
N 

Z + 
U 

i 
F -IN 

I 

N 

1 

Y 

t 
U + 
2. 

J 
N 

I 

N 



Quantum effects in systems with accelerated mirrors 2423 

The appearance of the second S function term on the right-hand side of this equation 
can be understood if we note that, because of the geometry of our model, all the null 
rays being emitted from a point x inside the uniformly accelerated mirror will reach the 
point x’ = Jllx (figure 1). The factor - a 2 / y Z  appears because of the Doppler change of 
the intensity of the light reflected by the moving mirror. For the same reason the causal 
Green function in the Einstein world possesses the same property. 

Using the above-defined causal Green functions, one can verify (see appendix 2) 
that the corresponding vacuum states inside and outside the spherical mirror which 
expands or contracts with uniform acceleration (problem A) and in the region between 
two such concentric mirrors (problem B) are stable. Thus 

It should be noted that outside the mirror boundary G,,(xly) is a regular function for 
x = y, and the ie addition is essential only when the stress-energy tensor behaviour near 
the mirror boundary is analysed. The explicit expressions for the canonical (4  = 0) and 
improved (5 = i )  stress-energy tensors in the problems under consideration are given in 
table 1. We discuss now the properties of the vacuum stress-energy tensors obtained. 

4.1. Single spherical accelerated mirror (A)  

We begin by considering the canonical (6 = 0) stress-energy tensor properties. The 
corresponding energy density distribution at time t = 0 is 

a 2  x 2 + a 2  
277 ( X ~ - - U ~ ) ~ ’  

T(c=o)oo = -2 (4.3) 

i.e. the energy density is everywhere (both inside and outside) negative. Far from the 
mirror when 1x1 + 00 one obtains 

a’ 1 
2 2  \XI6 * 

T(c=o,oo - -- - (4.4) 

Near the mirror boundary the negative energy density increases infinitely: 
. .  
1 1  

T(c=o,oo - -- - 16r2 A4’ 
A =  1x1 - a .  (4.5) 

This behaviour is also characteristic of the canonical vacuum energy density near the 
conducting plane at rest. This divergence is well known to be connected with the 
non-physical choice of the boundary conditions. Namely, the mirror is considered to be 
ideal, i.e. (a) it reflects the waves of all the frequencies completely, and ( b )  the mirror 
reaction on any external field change is supposed to be instantaneous. 

An asymptotic behaviour of the stress-energy tensor when a point p tends to the 
future null infinity ( p  +9+) along the null geodesic x s  = ut’’ +r1”(6,4)(t,t” = - 1 ,  
lsts = -1, lsls = 0) is 

( r  + 00). (4.6) 

This asymptotic form shows that there is a negative energy density flux from the mirror 
at infinity. The analogous asymptotic behaviour near 9-( a point p tends to 9- along a 

rZT(c=O)rv - -(a2/16.rr 2 4  U )I,/” 
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null geodesic xcI = utw +rncI(B, 4) ,  nWn” = 0,  ncItcI = 1 )  is 

(4 .7)  

It describes the flux of the negative energy incident on the mirror from the 8- infinity. 
When a + 03, we have a mirror plane at rest, and the corresponding stress-energy 

tensor limit 

2 2 4  r T(f=o,crv --(a2/16.rr v )n,n,. 

(4 .8)  

coincides with the well-known expression for the vacuum canonical stress-energy 
tensor in the half-space over the infinite conducting plane (see e.g. DeWitt 1975). 
Rectangular coordinates are chosen in such a way that x 1  = 0 is an equation of the plane 
mirror surface. 

The improved stress-energy tensor is identically zero for the problem A. 

4.2. Space-time region between two concentric spherical accelerated mirrors ( B )  

In this case both canonical and improved vacuum stress-energy tensors do not vanish. 
The improved energy density at time t = 0 is 

(The prime denotes that the term with n = O  in a sum must be omitted.) If the limit 
a +CO, b + CO, d = b - a  = constant is taken, one obtains two parallel mirror plates, and 
the corresponding vacuum stress-energy limit is 

(4 .11)  

It is not difficult to show that these expressions coincide with the well-known results 
obtained earlier for this case (see DeWitt 1975). 

If we compare the results obtained with the results for the plane accelerated mirror 
we can conclude that many properties of the two-dimensional models are valid in our 
case and not in the plane accelerated mirror case. For example, the improved 
stress-energy tensor is equal to zero in problem A. It is rather remarkable that in the 
conformally coupled case there is no energy either inside or outside the sphere, even 
though when the sphere is static it is well known that a Casimir energy exists. This 
Casimir energy is apparently exactly cancelled by the polarisation energy produced by 
the surface of an expanding or contracting mirror when it is uniformly accelerated. 

It should be stressed that the method developed in this paper can apparently be 
exploited when other (i.e. Dirac, Maxwell, etc) massless fields and more complicated 
boundaries are considered. 

Appendix 1. Causal Green function and the vacuum stability condition 

Let 9 b e  a space of complex solutions of the linear equation D [ f ]  = 0, and B( f , ,  f2) be a 
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canonical bilinear form corresponding to this equation calculated for two complex 
solutions fl, f 2  E 9. For the theory of the scalar field described by the action (2.1), 

BVI, f 2 )  = I ( f i a J 2  - f ~ a , d d  dZ'. 
z 

Suppose that two normalised bases Fin = ( f i n . a ,  f i n , a )  and FOut = (fout,n, fOut,,) are given in 
9 which correspond to some particular choice of the decomposition of the positive and 
negative frequencies in the past (Fin) and in the future (Fout). In this case the in- (out-) 
vacuum state can be defined by conditions 

U ~ ~ , ~ / O ;  in) = iB(fin,a4)10; in) = 0,  

(aout,alO; out) = iB(fout,a4)lo; out) = 0). 

To obtain the expression for the causal Green function G(xly) it is convenient to use the 
formula 

( A l . l )  

(A1.2) 

(A1.3) 

For any functions G(y1, ..., y , l x )  and F(xIz1,. . . , z , )  considered for fixed values of 
y l ,  y z ,  . . . , y ,  and z ~ , z z , .  . . , zm we introduce the notation 

YI.Yt...Y"G(X)= G(Y1, Y 2 , .  * * 9 Y n l X ) ,  

F , , , , . . . , _ ( ~ ) ~ F ( x / z i ,  2 2 , .  . . , zm) ,  

and denote 

(G * F ) x ( Y I ,  * , Y n I Z 1 ,  * * Z m ) = B Z ( y l  ... y,G, FzI...z,,,). (A1.4) 

Using equation (A1.3) it is not difficult to show that, for any function f ,  (G * f ) & )  
((6 * f ) ~ ( x ) )  contains only positive (negative) frequencies in the future (for x > Z) and 
contains only negative (positive) frequencies in the past (for x CZ). 

One can also rewrite the expression for the Green function G(x1y) in two equivalent 
forms: 

i(C f o u t , , ( X ) f o u t , a ( y ) +  c ~ o u t , . ~ x ~ ~ a ~ ~ o u t . ~ ~ y ~ ) ,  

i (~fout ,a(y)fout ,r  x ) +  4 c ~ o . t . a ~ y ~ v a P ~ o . t . e ~ x ~ ) ,  

x 3 y 

x r y ,  
(A1.5a) a.0 

i( C fin.a ( X l f i n ,  + C L a  ( ~ ) A a p f i n , p (  Y,) 7 

i( C fin,a ( Y ) f i n , a ( x )  + C f i n . a (  y ) A a J i n , p ( x ) ) ,  

x + Y 
(A1.5b) a.0 i :  a.P 

1: G(x1y) = 

x 4 Y ,  
G(xly) = 
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where 

vap = SO' ( a ,  p ;  outlo; in) 

and 

= si' (0 ;  outla, p ;  in) 

are amplitudes for pair creation and annihilation by an external field. Using these 
expressions we can obtain 

These relations show that the equality 

(G * G)z(x~z)=O, x 3 z s z  (A1.6) 

is a necessary and sufficient condition for the vanishing of matrices V and A and hence 
for the vacuum stability. 

To obtain the equations connecting the Green function G""'(xly) with G(x1y) we 
note that 

Using equation (A1.5) one can obtain 

(A1.7) 

(A1.8) 

(A1.9) 

These equations and a symmetry condition, 

G""'(x / y )  = G""'( y Ix), (A1.lO) 

define the Green function G""'(xly) uniquely. To show this, we suppose that, for x 3 y, 
G""'(x1y) is written in the form 

( A l . l l )  

Equation (A1.8) gives B = 0, C = I .  If we put expression (Al.11) into (A1.9), we obtain 
D = E  = 0. Using (A1.lO) we find that G""'(xly) coincides with (A1.7). 
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Appendix 2. Proof of the vacuum stability condition 

For a free causal Green function G o ( x 1 y )  in an empty Minkowski space the following 
relations are satisfied: 

(Go * Go)z(xIz) = 0, xf I ; ,zf I ;  or x+I; ,z*I; ,  (A2.1) 

(Go * Go)r(x 12) = 0, X 4 I ; + Z  or 2 3 x 3 - x .  (A2.2) 

Here Z is a total Cauchy surface in a space-time without boundaries. 
Denote now 

(A2.3) 

where F(x ly )  and K ( y l z )  are two arbitrary functions and U is a part of the y o = O  
hyperplane. Pass to new variables t”’, 

Y *  = (a2/t2M*, (A2.4) 

in which the equations y o  = 0, y E U can be rewritten as 

to = 0, 4 E JU (A2.5) 

where JU  is an image of the region U under the inversion transformation (A2.4). If we 
take into account that 

then it is not difficult to get 

(A2.6) 

where 

Because the vacuum stability condition (A1.6) does not depend on the choice of a 
surface. 

In this case equation (A1.6) can be rewritten as 

Z:,a(xlz) = 0,  x o > o > z o  (A2.7) 

For the exterior (interior) problem A, y E U when IyI ~a (ly 1 S a) .  For problem B, 
y E U when a s lyl s b. If the point y lies in the hyperplane y o  = 0, then y 2  L 0 and we 
have for the Green functions in the problem under consideration 

J ( y ) G ( x l y ) =  G(xIy), J ( y ) G ( y l z ) =  G ( y l z ) .  

particular Cauchy surface 2, we can take part of the y o  = 0 hyperplane as a 

If we remember now that 

a Y l d  = K(Y)Go(YlZ), 

K ( Y )  = I + J a ( y )  

where 
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for problem A and 

K (  y )  = (1 -JaJb)-'(Ja +JaJb) -k (1 -JbJ, )-'(Jb + JbJ, 

for problem B, then equation (A2.6) can be used to obtain the vacuum stability 
condition in the form 

In the case of the exterior problem A and in problem B x2>0and hence G(xly)=  
K(x)Go(xly). Thus we have 

c a 
y O = O  J Y  

( G  * G ) z ( x / z ) = K ( x )  I d y G o ( x / y ) ~ G d Y l z ) = O ,  xo>  o >  yo. 

The last equality is written because of property (A2.2) of the free causal Green function. 
In the case of the interior problem A, if x 2  > 0, then the above consideration is also 

valid. If x 2 < 0 ,  then 

G(xly) = Go(xly)+J4(x)Co(xIy), 

and using properties (A2.1) and (A2.2) one can also verify the fulfilment of the vacuum 
stability condition. 
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